Hydration status affects urea transport across rat urothelia.
نویسندگان
چکیده
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.
منابع مشابه
Hydration status affects sodium, potassium, and chloride transport across rat urothelia.
Recent data suggest possible net transport of urinary constituents across mammalian urinary tract epithelia (urothelia). To evaluate the effect of animal hydration status on such transport, we instilled urine collected during 2-day water deprivation, water loading, or ad libitum water intake into isolated in situ bladder(s) of groups of rats undergoing one of the same three hydration states. Af...
متن کاملExpression, localization, and regulation of urea transporter B in rat urothelia.
Although mammalian urothelia are generally considered impermeable to urinary constituents, in vivo studies in several species suggest urothelial transport of water, urea, and solutes under certain conditions. This study investigates the expression, localization, and regulation of urea transporter-B (UT-B) in rat renal pelvis, ureter, and bladder tissues. Immunoblots of homogenates of tissues id...
متن کاملAn independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts.
We have shown that urea transport across the terminal inner medullary collecting duct (terminal IMCD) is mediated by a vasopressin-stimulated, facilitated diffusion process exhibiting properties consistent with a transporter. To investigate whether hypertonic NaCl, as exists in vivo in the inner medulla, affects urea permeability, we studied isolated perfused rat terminal IMCD segments. Perfusa...
متن کاملExpression, localization, and regulation of aquaporin-1 to -3 in rat urothelia.
Although mammalian urothelia are generally considered impermeable to constituents of urine, in vivo studies in several species indicate urothelial transport of water and solutes under certain conditions. This study investigates the expression, localization, and regulation of aquaporin (AQP)-1, -2, and -3 in ureteral and bladder tissues in 48-h dehydrated and water-loaded female Wistar rats. Imm...
متن کاملHydration status affects osteopontin expression in the rat kidney
Osteopontin (OPN) is a secretory protein that plays an important role in urinary stone formation. Hydration status is associated with the development of urolithiasis. This study was conducted to examine the effects of dehydration and hydration on OPN expression in the rat kidney. Animals were divided into three groups, control, dehydrated, and hydrated. Kidney tissues were processed for light a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 301 6 شماره
صفحات -
تاریخ انتشار 2011